Но чаще всего хочется использовать однополярный источник напряжения (как правило, такие источники наиболее распространены в радиолюбительских схемах). В то же время, анализируя параметры известных ОУ, можно сделать интересный вывод — большинство их работает и при пониженном питании, чем это гарантируют технические условия. В таком случае удобно задать искусственную «общую точку» (это так называемая «плавающая земля»), как показано на рис. 13.14.

Путеводитель в мир электроники. Книга 2 - _199.jpg

Рис. 13.14. Искусственная «общая точка» на основе резисторного делителя

Важно отметить, что такая «общая точка» годится для работы с переменными сигналами, и то не более чем для 3–4 ОУ, подключенных к ней. Но в любом случае рекомендуется на минимально возможном расстоянии от выводов питания микросхем и «общей точки» включать керамические конденсаторы небольшой емкости (примерно 0,015…0,1 мкФ) — они на рисунке не показаны. Эти конденсаторы в значительной степени «спасают» схему от импульсных помех по цепям питания. Помогают они, как мы говорили, и в случае взаимного влияния микросхем друг на друга.

Компараторы

Любой операционный усилитель можно превратить в компаратор, если не охватывать его обратной связью. Название этого электронного устройства происходит от английского слова «compare» — сравнение. Отсюда понятна функция компаратора — сравнение двух аналоговых сигналов по величине и выдача информации о том, какой сигнал больше (рис. 13.15).

Путеводитель в мир электроники. Книга 2 - _200.jpg

Рис. 13.15. Принцип работы компаратора

Компаратору не интересны абсолютные уровни сигналов (лишь бы они не превышали максимально допустимых значений), он реагирует только на их разницу. Почему компаратор может получиться из обычного операционного усилителя? Вспомните, как «забрасывает» выходной сигнал даже от небольшого смещения на входе, и все станет ясно. Для работы в качестве компаратора нужно выбирать ОУ с максимальной скоростью нарастания сигнала и с максимальным усилением. Разработаны и специальные микросхемы компараторов, которые оптимизированы именно по скорости нарастания.

Наиболее универсальны и просты в применении популярные микросхемы компараторов К554САЗ или К521САЗ (это практически одна микросхема, но выполненная в равных корпусах, рис. 13.16).

Путеводитель в мир электроники. Книга 2 - _201.jpg
Путеводитель в мир электроники. Книга 2 - _202.jpg_0

Рис. 13.16. Внешний вид корпусов компараторов К521САЗ, К554САЗ, варианты их обозначения на электрической схеме (выводы для частотной коррекции, если они не используются, то обычно не показываются) и внутреннее строение выхода (в скобках указаны номера выводов для K554CA3)

У этих конкретных микросхем имеется еще одно достоинство — довольно мощный выход, позволяющий подключать нагрузку с током до 50 мА, к тому же там, в отличие от обычных ОУ, установлен выходной транзистор с неподключенными (открытыми) коллектором и эмиттером, что позволяет, в зависимости от необходимости, включать его по схеме с общим эмиттером или с общим коллектором. Схема с открытым коллектором удобна, когда надо согласовать выходной уровень со стандартным для логических микросхем разных типов (выход с открытым коллектором часто обозначают внутри микросхемы условным знаком в виде ромбика с чертой внизу). Напряжение питания у этих микросхем может быть двухполярным ±15 В или же однополярным от 5 до 15 В.

Не пытайтесь использовать компаратор как операционный усилитель — он совершенно не предназначен для работы в таком режиме!

А теперь поговорим об особенностях применения компараторов, точнее, о путях улучшения их характеристик. Компаратор — это типичная пороговая схема, которая изменяет свое состояние при превышении входным сигналом определенного уровня. Обычный компаратор чаще всего неплохо выполняет возложенную на него задачу, но иногда возникают неприятные ситуации, и вот почему. Допустим, мы подали на его вход медленно меняющийся сигнал, в котором присутствует небольшая высокочастотная пульсация (такое бывает довольно часто), и намереваемся сравнить его с установленным уровнем, называемым пороговым. Тогда близко к порогу переключения компаратора начнутся его переключения с большой частотой — возникает так называемый дребезг — короткие импульсы на выходе (рис. 13.17). С явлением дребезга мы часто сталкиваемся при срабатывании механических контактов, но тут случай особый, не механический.

Путеводитель в мир электроники. Книга 2 - _203.jpg

Рис. 13.17. Дребезг выходного сигнала компаратора под воздействием помех

Увеличить помехоустойчивость компаратора позволяет установка между входами небольшой емкости (10…1000 пФ), но при этом уменьшится и быстродействие срабатывания, а это не всегда допустимо.

Устранить дребезг можно и другим способом, воспользовавшись идеей, реализованной на рис. 13.18.

Путеводитель в мир электроники. Книга 2 - _204.jpg

Рис. 13.18. Введение гистерезиса в компаратор за счет положительной обратной связи

Суть ее состоит в установке разных порогов для переключения микросхемы, как это показано на графике, рис. 13.19 (включение происходит при большем напряжении, чем выключение). Это довольно часто используется в специальных формирователях сигнала, названных триггером Шмитта. Характеристика триггера Шмитта (рис. 13.19, б) с установленными разными порогами переключения называется гистерезисной.

Путеводитель в мир электроники. Книга 2 - _205.jpg

Рис. 13.19. Разнесение порогов срабатывания компаратора (а) и передаточная гистерезисная характеристика (б)

Принцип работы этой схемы (рис. 13.18) таков: поскольку выходное напряжение компаратора, практически равное напряжению питания ОУ, «гуляет» в пределах ±Uпит, резистор R3 сдвигает потенциал неинвертирующего вывода то в одном, то в другом направлении, создавая дополнительный ток то через резистор R1, то через резистор R2. Увеличение-тока, как мы знаем, ведет к увеличению падения напряжения, что и сдвигает уровень сравнения. Кроме того, резистор R3 — это положительная обратная связь, которая ускоряет переключение компаратора, быстрее «забрасывает» его в крайние положения.

Отметим, что в цифровой технике, о которой у нас намечен отдельный разговор, широко применяются готовые триггеры Шмитта (резистор ОС уже установлен в корпусе микросхемы). Применяются они и в составе аналоговых микросхем. Например, в драйверных, предназначенных для управления в ключевом режиме мощными полевыми транзисторами MOSFET и IGBT, на входе обязательно имеются формирователи типа триггера Шмитта.

В качестве примера применения компаратора с гистерезисом на рис. 13.20 показана практическая схема, собранная на К521САЗ. Она может служить для автоматического включения вентилятора при повышении температуры в комнате или подвале ниже установленного регулировочным резистором предела (это позволяет уменьшить колебания температуры в помещении). Данная схема довольно универсальна и в зависимости от типа применяемого датчика (фоторезистор, ИК-диод и т. д.) может выполнять разные задачи.